How Pumice Pozzolans Super-Charge Concrete Performance

EXECUTIVE SUMMARY

SITUATION
Our modern civilization, for all its marvels, is built upon an infrastructure of short-lived, crumbling concrete.

PROBLEM
Today's standard concretes simply aren't as good as they could be: almost as soon as standard concrete is placed, the process of degradation begins.

SOLUTION
Adding a high-purity natural pumice pozzolan to the concrete formulation mitigates or completely eliminates the problems inherent in standard concrete.

RESULT
Our failing roads, bridges, and structures can be replaced with a high-performance concrete that expert, ASTM-standards research has shown to provide significant performance increases in terms of appearance, impermeability, longevity, thermal cracking, resistivity to chemical attacks, and compressive strength. All possible using an abundant, safe, natural pumice pozzolan...the same pozz used by Roman engineers.

The Romans discovered the secret to durable concrete: pumice. A landmark study details how pumice pozzolans give standard concrete a serious strength and density boost.
TODAY'S STANDARD CONCRETES simply aren't as good as they could be—and they certainly don't match up to the world class concrete perfected by Roman engineers two millennia ago. Almost as soon as modern concrete is placed, the process of degradation begins. Recent studies suggest that only about 75% of the cement powder is converted to Calcium Silicate Hydrate (CSH), the binder that glues concrete together. Most of the remaining 25% is converted to Calcium Hydroxide (CH), a by-product of the hydration reaction between water and cement. Not only does the CH contribute nothing to concrete strength and durability, it instigates a handful of problems that actively work against and drastically affect the integrity of the concrete.

Such As...?

Porosity. When the CH migrates out of the concrete's interior via capillary action, it leaves behind a network of density-compromising wormholes that both weaken the concrete and allow for the future ingress of water. This infiltrating water can contain sulfates, chlorides, and other damaging chemicals. In cold climates, the invasive water will freeze, causing freeze-thaw damage to the concrete.

Chloride Attack. Chloride ingress can cause corrosive expansion, creating internal cracking of the concrete as well as eventual destruction of the steel reinforcement within.

Sulfate Attack. Not all of the CH migrates out of the concrete. What remains will combine or react with other chemicals that may be present in the matrix, or may be brought to the interior of the concrete with the water that permeates through the new pores in the concrete. Among the most damaging of these reactions is a 'sulfate attack'—a reaction between the CH and various forms of sulfate, which can render the concrete completely non-functional. When CH and sulfate combine, an expansive reaction takes place that destroys the concrete from within.

Alkali Silica Reaction. ‘Reactive’ aggregates within the concrete can combine with the CH, destroying the bond between the aggregate and the CSH, eventually creating fractures due to expansive pressures. Known as ‘Alkali-Silica Reaction’ or ASR, it can destroy the integrity the concrete.

Efflorescence. As for the appearance problem, when the migrating CH reaches the surface of the concrete it will react with Carbon Dioxide in the air, transforming into calcium carbonate and staining the concrete surface—a process known as efflorescence.

Beautiful Alchemy

The mitigation of such ills is neither expensive nor complicated: add pumice pozzolan to the mix design. The pumice, while not cementitious in nature, replaces some of the Portland cement (up to 40%) and provides a powerful pozzolanic charge that works at the molecular level with the concrete paste, reacting to and melding with the trouble-causing CH, ultimately converting it into additional CSH. The consumptive transformation of the CH mitigates or completely eliminates the problems it spawns. And that newly-created CSH does what you'd expect: it further densifies and strengthens the concrete, welding the aggregates into a dense, durable, almost impermeable matrix. This pozzolanic reaction—a molecular reclamation process, if you will—continues until the pozzolan is used up. It's a truly remarkable, effective and efficient process. And with pumice pozzolan priced only slightly higher than the cost of the cement it replaces, the economics work beautifully as well.
Other Advantages from the Pozzolanic Charge

While chemical resistance is perhaps the biggest benefit to adding pumice pozzolan to concrete formulations, it is by no means the only gained advantage. Extensive (and on-going) studies by the University of Utah and other institutions detail how pumice pozzolans can also:

Reduce Heat of Hydration Damage. Natural pumice pozzolans reduce the heat of hydration* anywhere from 10 - 40% during the first 100 hours, depending on the ultimate mix design, thus lowering the threat of thermal cracking and allowing for a cooler, more controlled set.

After about 100 hours, the cement-water hydration process wanes while the pumice pozzolan mixes continue to hydrate, filling pores with CSH and densifying the concrete until one of the two remaining hydration agents, Calcium Hydroxide or Pumice Pozzolan, has been consumed.

Increase Long-Term Compressive Strength. In the University of Utah study, a relatively high water/cement ratio of .485/1 was used for the control and four additional mix designs utilizing the pumice pozzolan. The four pumice pozzolan mix designs ranged from 3300 PSI to 4600 PSI in 7 days and from 4800 PSI to 7000 PSI in 28 days. Pozzolan quantity and particle size accounted for the variation in strengths. These factors are consistent and predictable, pour after pour. Strength will continue to increase for up to a year or more*, eventually surpassing the control (OPC) by anywhere from 10% to 40% in ultimate, long term compressive strength.

Healthy and Safe. The University of Utah study corroborated previous test data, which indicates that this particular natural pumice pozzolan is free of crystalline silica and other hazardous materials. Pumice is so innocuous, for example, it is used in the dental industry to clean teeth and in the cosmetics industry as an exfoliation agent in skin creams.

While by-product pozzolans struggle with undesirable contaminants, a carefully mined and refined pumice pozzolan is the environmentally safe, health-friendly choice.

Reduces the Carbon Footprint. Pumice is naturally calcined by mother nature, ensuring that pumice pozzolan has a minimal contribution to the carbon footprint (CF). Additionally, pumice pozzolan can replace up to 40 percent* (by weight) the Portland cement in a concrete mix as a Supplementary Cementitious Material (SCM) helping to offset the cement’s CF while enhancing its performance and durability.

Workability & Set Times. Pumice pozzolan-based mix designs have set times which are not significantly longer than the 100% cement control (see the University of Utah study). If a quicker set and high early strength are desired, the use of a water reducing agent will offset these properties, as needed.

The Romans and Pozzolana

Based on modern studies, Roman concrete appears to have had none of the issues our today’s standard concretes. Much of it still stands majestically after 2000 years (e.g., Pantheon, Coliseum, Aqueducts, etc).

The Romans didn’t have a quick setting cement like we do today. They used hydrated lime—a cementitious product made from limestone which was heated to drive off the carbon dioxide and transform the Calcium Carbonate into Calcium Oxide (lime) + H2O. Lime does not act like a hydraulic cement on its own, and will only form CSH in the presence of water and pozzolan. Roman cement also reacts at a slower rate than modern cement, and thus takes longer to set. Even so, whether using modern OPC or Roman cement (lime), the end result is the very same cementitious

*information not from the University of Utah study.
binder in the concrete: Calcium Silicate Hydrate (CSH).

The key to making it all work was their use of pumice. They discovered that when lime and water are mixed with a finely graded amorphous silica (known to the Romans as pulvis puteolanus, and referred to today as volcanic ash or pumice pozzolan) nearly 100% of the lime is converted to the good stuff—CSH... albeit, at a slower rate than modern cements.

The value of this history lesson is in understanding that both Roman cement and modern cement produce the same cementitious binder in the concrete: CSH.

In modern cement formulations, it is the hydraulic reaction between water and the cement powder that forms CSH, but it also forms CH as a by-product. Unless the CH is provided a pozzolan to capture it and turn it into additional CSH, it is free to do its dirty work.

In the ancient Roman concrete formulations, the hydrated lime combines with pumice pozzolan to form CSH without creating any additional deleterious by-products. Thus, Roman methods produced a densified, relatively impermeable concrete that was not nearly as susceptible to chemical attack as is modern standard concrete.

Present-day concrete formulations can take advantage of the process used by the Romans to convert liquid phase CH to CSH by adding pozzolan to modern concrete formulations, igniting the alchemy that supercharges concrete performance.

Standard concrete, lacking a pozzolanic charge, is almost always a disaster waiting to happen: you are never really sure how long your luck will hold out, but you are pretty well assured something unwanted will happen...it is just a matter of time before the unconverted CH and the problems it incites degrade the concrete in one manner or another.

So, unless you're supplying or designing concrete for projects where durability and long-term performance are not critical, a mix design that includes CH-converting pumice pozzolan is at once simple and economical.

In Summary

In summary, pumice has long been recognized as the original natural pozzolan—used by the Romans in their impressive 2000+ year-old concrete structures. A landmark study, released in June 2012 by the University of Utah, details the performance & durability of pumice as a concrete-fortifying pozzolan admixture as well as an SCM—advantages critical for today’s high-performance infrastructure requirements and an environmentally conscientious future. Visit www.hesspozz.com for additional information or call the author directly.

by Brian Jeppsen, VP-R&D at Hess Pumice Products of Malad City, Idaho.

HessPozz and Hess Ultra-Pozz products are produced and shipped worldwide by Hess Pumice—the world leader in processed pumice mining, production, & beneficiation. We distribute hundreds of products to thousands of customers across six continents. For four generations Hess has been dedicated to assuring customers consistent quality and on-spec, on-time delivery.

Telephone: 1.800.767.4701 x 111
Email: pozzinfo@hesspumice.com
Website: http://www.hesspozz.com
University of Utah Study: http://www.hesspozz.com/PDFs/HessPozz-StudyResults.pdf